CALIBRATION CERTIFIED
It may be necessary to calibrate power tools when using them for torquing applications. Power tools ca be calibrated using a variety of torque measuring ensure that the tool provides the desired output torque and operates within acceptable tolerances for the application.

When tools are calibrated, a Calibration Certification is typically provided. This document shows the date range for which the certificate is effective, and any air pressure and expected tolerance range for the application.

GENERAL RECOMMENDED TORQUES (FT-LB)


1. Higher grade fasteners can tolerate higher torque, allowing greater clamp load.
2. Fine thread fasteners can tolerate higher torque and generate higher clamp load
3. Fine thread fasteners cat tolerate higher torque and generate highed clamp load than coarse thread fasteners.
4. Theread condition alfects the torque required to achieve the desired clamp force. Dilty and dry fasteners require more torque to achieve th
Note:


PRECISION TOOLS FOR PRECISE PERFORMANCE
sioux

TORQUING

## WHAT IS TORQUE?

0Torque is rotational or turning force.
Torque is measured in length and Torque is measured in length and force: Length means distance from "center of drive" to "center of handle"; Force means "pounds", "Newtons" etc...
The standard torque formula used to calculate torque is "Length $x$ Force $=$ Torque" $(L \times F=T)$

Example A: 2 ft (length of wrench) $\times 30 \mathrm{lbs}$ (amount of force at center of handle) $=60 \mathrm{ft}-\mathrm{lb}$ of torque
Example B:
1 meter $\mathbf{2 5}$ Newtons
$=25 \mathrm{~N}-\mathrm{m}$
(Newton-meters)

## WHY IS APPLYING

PROPER TORQUE IMPORTANT?

- Safety \& Performance: Applying accurate torque is critical to assembly applications, engines and precision equipment.
- Creating a proper clamp load is the main objective - Creating a proper clamp load is the main obje
when applying torque to a fastener. Engine when applying torque to a fastener. Engine
cylinder heads, pipe couplings, wheels, all need to cylinder heads, pipe couplings, wheets, all need to
- There are three main factors that affect the correct There are three main factors that affect the correct
application of torque: (1) Condition of components, (2) Accuracy of torque instrument, (3) Properly applied torque values.
- Applying torque incorrectly can lead to stripped threads, premature loosening or broken fasteners that can cause catastrophic failure. Leaking joints may cause engine or equipment failures.


WHAT DOES TORQUE DO?

- Bolts (or threaded fasteners), are designed to create clamping force, also called "clamp load"
- When torque is applied to a threaded fastener, it
draws together the joint, (two pieces of material).
- As additional torque is applied to the fastener, the joint is compressed, creating a clamp load as the fastener begins the stretching process. It's this fastener stretch that creates and maintains clamping force, like a stretched bungee cord maintaining
- tension.

The actual amount of clamp load is determined by several factors:

- The amount of torque applied to the fastener. - The material and grade of the fastener. - The external friction on the joint - friction under the fastener head, and friction between the threads
material it's



## MFGHANIGAL TORQUING MIFHPDS



Pneumatic Impact Wrenches apply torque to bolts by a pneumatic motor. The motor drives a clutch that spins the hammer. The hammer delivers a series of blows to the anvil. Upon delivering the blow, the hammer "cams out" of engagement, spins, and repeats. The anvil drives the attached socket that torques the fastener.

STALL DRIVE SCREWDRIVERS


Stall Drive Screwdrivers feature a basic design where the spindle is mated directly to the motor. Final torque is adjusted by changing the air pressure.


Positive Clutch Screwdrivers apply torque through a preset clutch assembly that is engaged only when the user pushes the tool toward the work surface. The clutch disengages when the motor's maximum torque is reached or when the operator stops pushing. The operator's pushing force allows the user to install fasteners that require high run-down torque, such as self-tapping frews, whe The luth there final torque. The clutch assembly cams out when torque exceeds the desired torque level.
 out" and ratchet in place when maximum torque output is reached. This action also generates an easy-to-recognize sound, alerting the operator to reduce trigger pressure.


Torque Control Screwdrivers feature user adjustable torque settings. During operation, the screwdriver shuts off automatically when the pre-set torque level is reached. Often, these tools feature either a 'push to start' or "trigger start" function to improve the ease of use in the given application.

Pulse Tools apply torque via pulses of hydraulic fluid that drive the spindle, which in turn torques the fastener. Torque drive the spindle, which in turn torques the fastener. Torque levels are controlled by adjustments to hydraulic pressure
settings. Pulse Tools deliver high torque levels with minimal settings. P
vibration.


DC power drives a motor that delivers torque to a gearbox, which, in turn, drives a spindle. DC Nutrunners drive the fastener with extreme precision and shutoff automatically upon achieving the desired output torque. Nutrunners can also control the total angle of torquing for those applications that require it.


Pneumatic Torque Multipliers apply torque via a pneumatic motor that drives a series of gears that, in turn, deliver torque to the output spindle. The spindle drives the attached socket that torques the fastener. Torque Multipliers are capable of extremely high levels of torque. The tool is prevented from rotating during torquing by the reaction arm. Torque output levels can be adjusted by adjusting air pressure

